5. March 2021
Henriette zu Doha
Biochar | CCS | Co2-Footprint | Pyrolysis

Biochar as Nega­tive Emis­sion Tech­no­logy (NET)

The strict requi­re­ments of the EBC

In order to achieve climate neutra­lity by 2050, as called for by the EU, two funda­men­tally diffe­rent strands of action are required: on the one hand, the reduc­tion of carbon emis­sions, and on the other, the crea­tion of carbon sinks.

(source: Glen peters @ https://www.cicero.oslo.no/en/posts/climate-news/stylised-pathways-to-well-below-2c)

In the EU, this would require seques­te­ring a carbon quan­tity on the order of 15% of 1990 emis­sions, or about 850 million metric tons of CO2 equi­va­lent. Without carbon sinks, also known as nega­tive emis­sions, climate neutra­lity and thus the Paris climate goals cannot be achieved.

There are a number of viable methods for crea­ting carbon sinks, also known as Nega­tive Emis­sion Tech­no­lo­gies (NET), that actively remove CO2 from the atmo­sphere. The key to carbon effi­ci­ency is sequestra­tion (i.e., storage) over as long a period of time as possible.

Source: Peters_Glen

(source: EBI White Paper adjusted from MCC)

The Euro­pean Biochar Certi­fi­cate (EBC) for quality control was supple­mented in June 2020 with a new stan­dard for carbon sink certi­fi­ca­tion (EBC, 2020). This provided a scien­ti­fi­cally sound basis for quan­ti­fying the overall carbon sink perfor­mance of biochar appli­ca­tions. Key elements include:

  1. Biomass produc­tion must be carbon neutral, i.e., it must not impact exis­ting carbon sinks.
  2. Emis­sions from the entire char­ring process (pyro­lysis) must be subtracted. In parti­cular, this includes emis­sions asso­ciated with the trans­port and proces­sing of the biomass, any post-treat­ment, and the energy required to start the pyro­lysis process.
  3. Emis­sions from trans­porting the biochar to the point of use and, if appli­cable, emis­sions from further proces­sing of the biochar must also be subtracted.
  4. The final use of the biochar deter­mines the dura­bi­lity of the carbon sink. For example, for soil appli­ca­tions, a scien­ti­fi­cally based annual decay must be assumed. However, if the biochar is used as a sand repla­ce­ment in concrete, for example, this is not neces­sary because the biochar cannot oxidize in the absence of air.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

DAS KÖNNTE SIE AUCH INTERESSIEREN

New System Installation

New System Installation

We’ve commissioned a new PX500S system for our partner TCHAR in Taiwan. PYREG negative-emissions technology will be used to convert agricultural residues and other biosolids into high-quality biochar while also creating valuable carbon credits....

Climate Week – Let`s meet in New York

Climate Week – Let`s meet in New York

We’ll be attending and participating in Climate Week NYC later this month to meet with partners and other leaders in the climate and carbon removal industries. On September 24th, we’ll be a sponsor and participate at the Puro.earth Carbon Dioxide...