19. July 2022
Henriette zu Doha
Biochar | phosphorus fertilizer | Pyrolysis | Sewage Sludge

Biochar from sewage sludge: the phos­phorus ferti­lizer for a safe and sustainable agriculture

The Danish EPA gives green light for appli­ca­tion of biochar from sewage sludge for use in farming: Biochar from sewage sludge can now be used as a ferti­lizer. If the pyro­lysis takes place at tempe­ra­tures > 500˚C for more than 3 minutes, and the process tempe­ra­ture and dura­tion is docu­mented, the Danish Envi­ron­mental Protec­tion Agency inter­prets that the process may consti­tute a controlled waste hygie­nisa­tion. After Sweden and the Czech Repu­blic, this is the third EU country to take this important step towards closing cycles and secu­ring phos­phorus resources.

This is the result of the joint efforts of AquaGreen Denmark, the Euro­pean Biochar Industry Consor­tium EBI and many biochar suppor­ters. The EBI calls on the EU Commis­sion to include biochar from sewage sludge in the EU Ferti­lizer Regu­la­tion as an important step towards a safe and sustainable circular economy and agri­cul­ture. In the absence of a clear posi­tion on pyro­lysis as a means of upgrading sewage sludge, the EBI has addressed a posi­tion paper to the Euro­pean Commis­sion. It describes the Pyro­lysis process and summa­rizes the current state of rese­arch as follows:

What is pyrolysis?
The heating of biomass in a low-oxygen envi­ron­ment is called pyro­lysis. Pyro­lysis converts organic carbon into a gas (pyro­lysis gas) and fixed/elemental carbon. While organic carbon is degrad­able and while during its natural degra­dation, green­house gases like CO2 or CH4 are released into the atmo­s­phere, fixed carbon is recal­ci­trant (resistant to weathering/degradation). Unless it is burned, it will not react with any element and stay in its stable form as C. Thus, it can be consi­dered as a perma­nent carbon sink if used in a mate­rial way (no combus­tion). The speci­fi­ci­ties of the pyro­lysis process include:
– A tempe­ra­ture and process time high enough to “decom­pose” and/or “vola­ti­lize” major feed­stock conta­mi­nants, like virus or micro­pol­lut­ants (see below).
– The reten­tion of key nutri­ents (like phos­phorus) in the solid phase.
– The capa­city to convert part of the carbon contained in the feed­stock into “recal­ci­trant carbon” in the char, ensu­ring a stable carbon sink if the char is not
oxidized (burnt). This process is called Pyro­lytic Carbon Capture and Storage (PyCCS).

Pyro­lysis destroys feed­stock pathogens
Sewage sludge origi­nates mainly from human excre­ments. Natu­rally, the sludge contains patho­gens and pyro­gens, which are of public health concern. Stan­dard hygie­niz­a­tion of sewage sludge e.g., heating of the sludge to 70°C, does not elimi­nate spores, pyro­gens or pathogens.
The process condi­tions of pyro­lysis (> 350°C for several minutes) are much harsher than approved steri­liz­a­tion condi­tions (Requi­ring 132°C for 4 minutes with steam (see CDC Steam Steri­liz­a­tion Disin­fec­tion & Steri­liz­a­tion Guide­lines) and 250°C to remove pyro­gens (bacte­rial endo­to­xins) under dry condi­tions (Dry Heat Steri­liz­a­tion). DNA is dena­tured at 90 °C, hence pyro­lysis removes all patho­gens and pyro­gens contained in sewage sludge (incl. bacteria, fungi, vira, spores, para­sites, anti­biotic resis­tance genes etc), from the final product, i.e. the biochar, thereby elimi­na­ting these public health concerns.

Pyro­lysis elimi­nates micro­pol­lut­ants from sewage sludge.
Incre­a­sing concern is raised regar­ding sewage sludge sprea­ding on farm­land, due to the presence of micro­pol­lut­ants in sludges. Recent scien­tific rese­arch has demons­trated that pyro­lysis will have a dest­ruc­tion or removal effect on several types of micropollutants:

Organic pollut­ants (phar­maceu­ti­cals, hormone disrup­ting molecules):
Recent scien­tific evidence shows that, at suffi­ci­ently severe pyro­lysis tempe­ra­tures (> 500°C) and resi­dence times (> 3 min), all refe­rence organic conta­mi­nants and organic micro­pol­lut­ants were comple­tely or nearly comple­tely degraded or driven off the solid mate­rial. A study published by the German Ministry of Envi­ron­ment in 2019 (Bundes­um­weltamt 2019) inves­ti­gated phar­maceu­tical resi­dues of various bioso­lids after pyro­lytic treat­ments above 500 °C. Following the pyro­lysis treat­ment with opera­ting tempe­ra­tures above 500°C all values of the inves­ti­gated phar­maceu­ti­cals were below the detec­tion limit. The authors concluded: With thermo-chemical treat­ments (i.e. pyro­lysis) a complete dest­ruc­tion of the phar­maceu­tical resi­dues is achieved. No further tech­nical treat­ment measures are necessary.

PFASs have been used in consumer products since the 1940s. They are extre­mely persis­tent and accu­mu­late in the envi­ron­ment as well as in our bodies. For this reason, they are often referred to as “forever chemi­cals.” According to rese­arch, some of them cause serious health effects such as cancer and liver damage. Per- and Poly­fluo­ro­alkyl Subs­tances (PFAS) are elimi­nated by the process of pyro­lysis. Kundu et al. [2] found that >90% of PFOS and PFOA in sewage sludge were destroyed in a pyro­lysis-combus­tion inte­grated process. Evidence from the US EPA Office of Rese­arch and Deve­lo­p­ment (2021) work with Bioforcetech’s commer­cially installed PYREG pyro­lysis plant shows that pyro­lysis at 600°C for 10 minutes and combus­tion of pyro­lysis gases at 850°C elimi­nate PFAS from sewage sludge [3].
Biofor­ce­tech (2021) has reported 38 PFAS compounds that were all kept at or removed to below detec­tion limit in the biochar in their pyro­lysis and pyro­lysis gas burning process [4].

Direct land sprea­ding of sewage sludge is a preferred method in some Euro­pean coun­tries. A poten­tial issue with this method is the elevated content of poly­cy­clic aromatic hydro­car­bons (PAH) in sludges. The process of pyro­lysis can elimi­nate the content of those to below detec­tion limits in the biochar with proper design of the pyro­lysis process (Moško et al., 2021) demons­trated that slow pyro­lysis > 400 °C removed more than 99.8 % of PCB, PAH, and endocrine disrup­ting and hormonal compounds studied [5]. The conclu­sion from the study is “high tempe­ra­ture (>600 °C) slow pyro­lysis can satis­fac­tory remove organic pollut­ants from the resul­ting sludge-char, which could be safely applied as soil improver.

Pyro­lysis elimi­nates micro­plastics from sewage sludge
Rese­arch indi­cates that sewage sludge is a sink for micro­plastics and further hand­ling of sewage sludge is critical for poten­tial dispersal. Thus, effec­tive reduc­tion of micro­plastics in the sludge is an important issue (Rolsky et al., 2020). The elimi­na­tion of micro­plastic conta­mi­nants can be assured by the high tempe­ra­ture during the treat­ment and the resi­dence time. Ni et al. 2020 [6] found that “Poly­ethy­lene and poly­pro­py­lene, the two most abundant micro­plastics in sewage sludge, were enti­rely degraded when the pyro­lysis tempe­ra­ture reached 450 °C.”.

The phos­phorus present in the feed­stock is retained in the pyro­lysis char
Phos­phorus must be reco­vered from sewage sludge in more and more EU member states so that fields can be ferti­lized with this recy­cled phos­phorus in the future. There are various methods for phos­phorus reco­very, but pyro­lysis at tempe­ra­tures from 500-800 °C is among the most carbon effi­cient and leads to a product that is directly useable as a ferti­lizer for soil appli­ca­tions without the need for any further chemical extrac­tion. The P-avai­la­bi­lity (P2O5) of the sludge biochar is between 40-80% in ammo­nium citrate (Fried­rich et. al. 2015) [7] which is a highly suitable method for measu­ring the value as a P-ferti­lizer (Kratz, S.; Schnug, E., 2009) [8]. According to the same refe­rence this indi­cates a highly valu­able fertilizer.


[1] Paz-Ferreiro J, Nieto A, Méndez A, Aske­land M, Gascó G (2018) Biochar from Bioso­lids Pyro­lysis: A Review. Inter­na­tional Journal of Envi­ron­mental Rese­arch and Public Health, 15, 956
[2] Removal of PFASs from bioso­lids using a semi-pilot scale pyro­lysis reactor and the appli­ca­tion of bioso­lids derived biochar for the removal of PFASs from conta­mi­nated water, Kundu S. et al, Environ. Sci.: Water Res. Technol., 2021, 7, 638–649
[3] EPA PFAS inno­va­tive treat­ment team (PITT) findings on PFAS dest­ruc­tion tech­no­lo­gies, EPA Tools & Resources Webinar February 17, 2021, Gullett B.
[4] https://ccag.ca.gov/wp-content/uploads/2020/02/BFT_FEB_2020-1.pdf
[5] Effect of pyro­lysis tempe­ra­ture on removal of organic pollut­ants present in anae­ro­bi­cally stabi­lized sewage sludge, Moško J. et al, Chemo­s­phere 265
(2021) 12982
[6] Ni et al., 2020: Environ. Sci. Technol. Lett. 2020, 7, 12, 961–967. https://doi.org/10.1021/acs.estlett.0c00740
[7] Deut­sche Gesell­schaft für Abfall­wirt­schaft e.V., 5. Wissen­schafts­kon­gress Abfall- und Ressourcen- wirt­schaft am 19. und 20. März 2015 an der Univer­sität Inns­bruck Kevin Fried­rich, Katha­rina Schuh, Thomas Appel Trockene Klär­schlamm­kar­bo­ni­sie­rung – ist ein dezen­trales Phos­phor­re­cy­cling möglich?
[8] Kratz, S.; Schnug, E., 2009 On the solu­b­i­lity and plant avai­la­bi­lity of phos­phorus from mineral ferti­li­zers – a review, JOURNAL FÜR KULTUR­PFLANZEN, 61 (1). S. 2–8, 2009, ISSN 0027-7479 VERLAG EUGEN ULMER KG, STUTTGART,



Submit a Comment

Your email address will not be published.


Visit us at these upco­ming events!

Visit us at these upco­ming events!

PYREG is present at various trade fairs and congresses. We look forward to welcoming you at our booths there or to meeting you during the events. To reserve an appointment, please contact us at sales@pyreg.com.   Bio360Expo: February 8-9, 2023...

Raising Climate Ambi­tions with Biochar – a sympo­sium by IBI

Raising Climate Ambi­tions with Biochar – a sympo­sium by IBI

This 6 – 8 December 2022, join PYREG for International Biochar Initiative's annual symposium, “Raising Climate Ambitions with Biochar.” The three-day, virtual event will focus on quantifying biochar’s true climate solution impacts, as well as...